# VI Congresso Internacional de Ensino da Matemática



ULBRA - Canoas - Rio Grande do Sul - Brasil 16, 17 e 18 de outubro de 2013

**Minicurso** 

### CONSTRUÇÃO DE MODELOS MATEMÁTICOS PARA O ENSINO BÁSICO

Bruna Stail<sup>1</sup>
Ediana Cimadon<sup>2</sup>
Julhane Alice Thomas Schulz<sup>3</sup>

**Resumo**: O minicurso tem por finalidade proporcionar experiências em relação à Modelagem Matemática, levando situações do dia a dia para as aulas de Matemática. A proposta consiste em apresentar o conceito e as etapas para o uso da Modelagem Matemática como estratégia de ensino. Os participantes desenvolverão modelos matemáticos que poderão ser empregados no Ensino Básico, mostrando que a Matemática não está desvinculada da realidade. Os temas abordados oportunizarão discussões e o desenvolvimento de conteúdos matemáticos, buscando-se resultados positivos em relação à motivação e aprendizagem.

Palavras Chaves: Modelos Matemáticos. Ensino Básico. Modelagem Matemática.

## INTRODUÇÃO

Muitas vezes a Matemática é considerada sem aplicação e pouco relacionada com situações do dia a dia. Para mudar estes paradigmas, estratégias de ensino e aprendizagem diferenciadas como a Modelagem Matemática, permitem a interação entre a realidade e a Matemática, pois possibilita ao aluno o hábito da pesquisa, questionamento, propiciando sua autonomia.

Segundo Bassanezi (2009), faz-se necessário buscar alternativas de ensino aprendizagem que facilitem a compreensão da matemática e sua utilização. O autor afirma que a Modelagem Matemática é capaz de unir teoria e prática, motivar o aluno no entendimento da realidade que o cerca e na busca de meios para agir sobre ela e transformá-la.

Para Bassanezi (2009, p.16), a Modelagem Matemática é a "[...] arte de transformar problemas da realidade em problemas matemáticos e resolvê-los interpretando suas soluções na linguagem do mundo real". Com isso, ele destaca a ideia de Modelagem no ensino como

Bolsistas do Programa de Educação Tutorial (PET) Matemática e Acadêmicos do Curso de Licenciatura em Matemática do IFRS – Câmpus Bento Gonçalves – bruna.stail@bento.ifrs.edu.br.

Bolsistas do Programa de Educação Tutorial (PET) Matemática e Acadêmicos do Curso de Licenciatura em Matemática do IFRS – Câmpus Bento Gonçalves – ediana.cimadon@bento.ifrs.edu.br.

Tutora do Programa de Educação Tutorial (PET) Matemática e Professora Doutora do Curso de Licenciatura em Matemática do IFRS – Câmpus Bento Gonçalves – julhane.schulz@bento.ifrs.edu.br.

um método de investigação e a relaciona com a ideia da integração da Matemática com outras áreas do conhecimento, a interdisciplinaridade. Para isso é necessário utilizar instrumentos matemáticos relacionados com outras áreas do conhecimento, para que a educação se torne mais próxima da realidade das pessoas.

Na década de 1980, a Modelagem Matemática destacou-se principalmente por meio dos trabalhos de Aristides Barreto, Ubiratan D'Ambrósio, Rodney Bassanezi, João Frederico Meyer, Marineuza Gazzeta e Eduardo Sebastiani, que a difundiram por meio de cursos de formação de professores e atividades em sala de aula.

# MODELAGEM MATEMÁTICA NA EDUCAÇÃO

O ensino e aprendizagem da Matemática muitas vezes tornam-se um processo formal e objetivo, e a Modelagem Matemática, como uma metodologia alternativa, pode proporcionar motivação para o estudo de seus conteúdos.

A sociedade entende a Matemática como objeto a ser ensinado e que o sujeito do processo é o professor. Na Modelagem, o sujeito é o aluno, afinal cada pessoa constrói o seu conhecimento atribuindo significado a seus próprios conceitos e entendimentos.

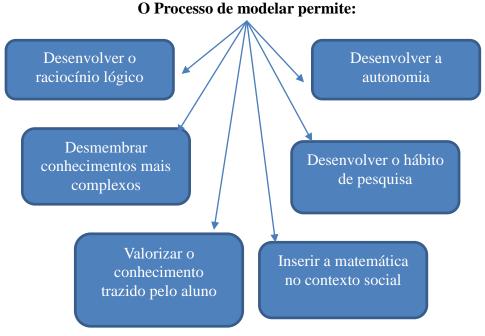



Figura 1: Processo de modelagem.

Fonte: Acervo dos autores

A fim de ter sucesso na aplicação do método, Biembengut e Hein (2010, p. 19-28) sugerem cinco passos referentes ao processo de ensino e aprendizagem:

### 1. Diagnóstico

Nessa etapa, o número de alunos e o horário da disciplina são determinantes para o planejamento da aula, como os exemplos utilizados pelo autor:

- A realidade socioeconômica dos alunos, bem como seus interesses e metas são essenciais na decisão sobre como efetuar a escolha do tema que norteará o desenvolvimento do programa.
- O grau de conhecimento matemático permite estabelecer os conteúdos matemáticos, bem como a ênfase necessária e o número de exercícios a serem propostos em cada etapa.
- O horário da disciplina (período diurno, vespertino, noturno ou final do período) determina a dinâmica da aula.

### 2. Escolha do tema

Para abordar o conteúdo programático a Modelagem Matemática deve partir de um tema inicial que irá contextualizar as atividades, sendo que o professor pode escolher o tema ou propor que os alunos o escolham. A escolha do tema pelos alunos tanto pode ser positiva, uma vez que esses se sentirão coautores do processo, quanto pode ser negativa, pois o tema escolhido pode não ser adequado para desenvolver o programa, ou ser muito complexo, exigindo do professor um tempo que este não dispõe para aprender/ensinar e ainda pode haver uma discordância entre os alunos no ato da escolha do tema, cabendo ao professor escolher o que mais convier e que estiver em maior sintonia com o conhecimento e a expectativa dos alunos.

### 3. Desenvolvimento do conteúdo programático

Dentro desse subtema temos alguns tópicos como a interação, matematização e modelo matemático, cada um com suas características próprias, que serão abordados posteriormente.

#### 4. Orientação de modelagem

Nessa etapa o objetivo da modelagem é criar condições para que os alunos aprendam a fazer modelos matemáticos aprimorando seus conhecimentos.

O modelo deve ser observado o todo tempo, pois se este for inadequado para atingir determinados objetivos, devem-se procurar novos caminhos. O modelo não é uma verdade absoluta, mas apenas uma aproximação da realidade; sendo assim, sujeito a mudanças. Por isso, a Modelagem Matemática é justamente esse processo de busca por modelos adequados, como protótipos de determinadas entidades. Processo este que está sempre sujeito a modificações, não sendo definitivo.

### 5. Avaliação do Processo

Nessa etapa o professor deverá fazer uma análise do percurso do aluno, tendo em vista o fato de observar o que o aluno criou e até que ponto foi desenvolvida sua capacidade de solucionar problemas, fazendo uso desse método.

O ideal é estimular o grupo a apresentar um maior número possível de abordagens sobre o problema. É nesse ponto que a modelagem mexe com a interpretação e o raciocínio dos alunos quando esses têm que propor problemas e soluções para os mesmos. Uma forma de analisar se o aluno conseguiu vencer os obstáculos e aprender com o método: o professor pode avaliar o empenho do aluno através de sua participação, assiduidade, cumprimento das tarefas e espírito coletivo; como também por aspectos objetivos como provas, exercícios e trabalhos, etc.

É importante salientar que a Modelagem Matemática não proporciona o conhecimento total do aluno em relação à matéria em questão, ela deve ser vista como método auxiliador no processo de ensino e aprendizagem, um meio de educar matematicamente.

# CONSTRUÇÃO DE MODELOS MATEMÁTICOS

A fim de promover a interação entre os participantes do minicurso com atividades de Modelagem Matemática, será desenvolvida uma proposta dividida em dois passos: familiarizar-se com o conceito de Modelagem Matemática e seus principais autores e no segundo passo, desenvolver tarefas, a partir de temas específicos, de Modelagem Matemática para que os participantes possam aprender e exercitar a metodologia.

# 1° TEMA: O Aquecimento da Água para o Chimarrão

Mate amargo (sem açúcar) que se toma numa cuia de porongo por uma bomba de metal. Atribui-se ao chimarrão propriedades desintoxicantes, particularmente eficazes numa alimentação rica em carnes.

O CHIMARRÃO é uma das várias formas de preparar a ERVA - MATE para ser tomada, tanto no inverno como no verão, a qualquer hora.

Para começarmos a modelar nosso problema, foi medida a temperatura ideal da água para nosso paladar que seria de 75°C. Foi utilizado quatro quantidades de água, para elevar a temperatura de 75°C.

O objetivo é verificar os diferentes tempos que a água leva para chegar à temperatura ideal. Partimos da temperatura da água de 18°C, e a temperatura ambiente foi de 20°C. As quantidades eram de 0,25 litros; 0,50 litros; 0,75 litros; 1,00 litro.

A seguir tabela com dados coletados para cada experimento:

### • Experimento 1:

Tabela 1: Dados coletados para o primeiro experimento (volume x tempo).

| Volume de água em litros | Tempo em Minutos |  |  |
|--------------------------|------------------|--|--|
| 0,25                     | 5,16             |  |  |
| 0,50                     | 10,15            |  |  |
| 0,75                     | 14,05            |  |  |
| 1,00                     | 18,03            |  |  |

Fonte: http://www.projetos.unijui.edu.br/matematica/modelagem/erva\_mate/

### • Experimento 2:

Tabela 2: Dados coletados para o segundo experimento (volume x tempo).

| Volume de água em litros | Tempo em Minutos |  |  |
|--------------------------|------------------|--|--|
| 0,25                     | 5,16             |  |  |
| 0,50                     | 9,6              |  |  |
| 0,75                     | 14,33            |  |  |
| 1,00                     | 18,75            |  |  |

Fonte: http://www.projetos.unijui.edu.br/matematica/modelagem/erva\_mate/

A partir dos dados informados construa um Modelo que descreva o tempo de aquecimento da água para o chimarrão em função do seu volume.

### • Média dos dois experimentos

Tabela 3: Média entre os dados coletados do primeiro e segundo experimento (volume x tempo).

| Volume de água em litros | Tempo em Minutos |  |  |
|--------------------------|------------------|--|--|
| 0,25                     | 5,16             |  |  |
| 0,50                     | 9,91             |  |  |
| 0,75                     | 14,41            |  |  |
| 1,00                     | 18,62            |  |  |

Fonte: http://www.projetos.unijui.edu.br/matematica/modelagem/erva\_mate/

A partir dos dados informados os participantes terão o desafio de construírem um modelo que descreva o tempo de aquecimento da água para o chimarrão em função do seu volume.

Podemos concluir que o tempo necessário para o aquecimento da água, dos 18°C aos 75°C, é diretamente proporcional à quantidade de água a ser aquecida, ou seja, quanto maior a quantidade de água maior o tempo gasto para o aquecimento.

### 2° TEMA: Crescimento de Mudas de Alface em Relação a sua Massa

Nome Científico: Lactuca sativa, Linné.

Família: Compostas, grupo Lactuceas

Nome Popular: Alface

Descrição Botânica: Presa a um pequeno caule, as folhas da alface podem ser lisas ou crespas e verdes, arroxeadas ou amareladas.

Propriedades: calmante, sonífero, refrigerante, emoliente e laxativa. Tem baixo teor calórico, ideal para os dias de verão e seu teor de fibras é ótimo para o funcionamento intestinal. Cem gramas de alface fornecem 15 calorias.

Princípios ativos: Vitaminas A e C, fósforo e ferro. Seu período de safra é de Maio a Novembro.

Para a construção do modelo, foram coletados dados ao longo do crescimento das mudadas de alface. As mudas de alfaces apresentavam massas diferentes e um tempo de plantio variado. Com estes dados, medindo a massa das respectivas mudas de alface, construiu-se uma tabela juntamente com a média das massas das alfaces.

Tabela 4: Dados coletados (tempo x massa).

|         | Massa de Mudas (g) |         |         |         |         |         |
|---------|--------------------|---------|---------|---------|---------|---------|
| Nº Muda | 06 dias            | 25 dias | 36 dias | 48 dias | 70 dias | 96 dias |
| 1       | 0                  | 0,31    | 0,54    | 5,84    | 96      | 175     |
| 2       | 0                  | 0,43    | 0,53    | 4,61    | 84      | 110     |
| 3       | 0                  | 0,45    | 0,68    | 2,90    | 68      | 120     |
| 4       | 0                  | 0,39    | 0,26    | 6,45    | 102     | 140     |
| 5       | 0                  | 0,44    | 0,98    | 7,05    | 75      | 95      |
| 6       | 0                  | 0,41    | 0,26    | 3,25    | 89      | 95      |
| 7       | 0                  | 0,21    | 0,62    | 3,86    | 111     | 225     |
| 8       | 0                  | 0,52    | 0,67    | 2,82    | 88      | 180     |
| 9       | 0                  | 0,44    | 0,63    | 2,95    | 82      | 160     |
| 10      | 0                  | 0,32    | 1,06    | 2,51    | 95      | 100     |

| Médias | 0 0,39 | 0,62 | 4,22 | 89 | 140 |
|--------|--------|------|------|----|-----|
|--------|--------|------|------|----|-----|

Fonte: http://www.projetos.unijui.edu.br/matematica/modelagem/alface/index

A partir dos dados informados os participantes devem construir um modelo que descreva a massa em gramas em função do tempo em dias.

### 3º TEMA: Dinâmica Populacional das Abelhas

Essa proposta foi desenvolvida por Biembengut e Hein (2010), houveram adaptações para estudarmos as Progressões Aritméticas.

Questão central: *Quanto tempo o "enxame voador" vai formar uma nova colmeia?* Valores fixados:

- Número de abelhas numa família nova: 10000 abelhas;
- Postura média de uma rainha: 2000 ovos/dia;
- Longevidade das operárias: 40 dias;
- Período entre postura e nascimento: 21 dias.

Como o período larval é de vinte e um dias, deve-se utilizar a hipótese de que as abelhas têm idades equidistribuídas, gerando uma taxa de mortalidade de duzentas e cinquenta abelhas ao dia.

Diante disso, os participantes devem construir a fórmula do termo geral (modelo matemático) da Progressão Aritmética correspondente e classificando-as em crescente, decrescente ou constante, para cada período diferente.

- 1° Período: Durante o primeiro período, o tempo entre a postura dos ovos e o nascimento é de vinte e um dias, não havendo nenhum nascimento, apenas mortes, por isso, acarretará uma diminuição da população.
- 2º Período: No segundo período, que iniciava no vigésimo primeiro dia até o quadragésimo primeiro, passavam a nascer duas mil operárias ao dia, mas continuavam a morrer duzentas e cinquenta.
- 3° Período: Durante o terceiro período, no 41° dia as operárias do enxame voador inicial desapareceram, pois vivem quarenta dias. As operárias que nasceram no 21° estão em plena juventude e, portanto, nos próximos 20 dias não acontecerão mortes, apenas o nascimento de 2000 abelhas por dia. Esse período dura até o 61° dia.
- 4° Período: No quarto e último período correspondente ao 61° dia em diante, passam a morrer as abelhas operárias que nasceram a partir do 21° dia, no entanto continuam nascendo 2 mil ao dia.

#### **RESULTADOS ESPERADOS**

Esperamos que com as atividades desenvolvidas, os participantes possam discutir e refletir sobre a Modelagem Matemática como estratégia de ensino e aprendizagem, os possíveis obstáculos que surgirão e deverão ser enfrentadas pelo professor, as dificuldades encontradas na construção do modelo e sobre a abordagem dos conteúdos matemáticos.

Os modelos construídos durante o minicurso podem servir de motivação no desenvolvimento de novos modelos, possibilitando a compreensão de como a Modelagem Matemática pode ser vivenciada nas escolas.

### REFERÊNCIAS

BASSANEZI, Rodney C. **Ensino-Aprendizagem com modelagem matemática**: Uma nova estratégia. 3.ed. SP: Contexto, 2009.

BIEMBENGUT, Maria S.; HEIN, Nelson. **Modelagem Matemática no Ensino**. 5 ed. SãoPaulo: Contexto. 2010.

BIEMBENGUT, Maria S. Modelagem Matemática e Implicações no Ensino Aprendizagem de Matemática. Blumenau. Furb. 1999.

BURAK, Dionísio. **Modelagem Matemática e a sala de aula**. In: Encontro Paranaense de Modelagem em Educação Matemática, 1., 2004, Londrina. **Anais**. Londrina: UEL, 2004.

ALFACE. Disponível em < http://www.projetos.unijui.edu.br/matematica/modelagem/alface/index>. Acesso em 16/05/2013.

O AQUECIMENTO DA ÁGUA PARA O CHIMARRÃO. Disponível em <a href="http://www.projetos.unijui.edu.br/matematica/modelagem/erva\_mate/">http://www.projetos.unijui.edu.br/matematica/modelagem/erva\_mate/</a>. Acesso em 16/05/2013.