VII CONGRESSO INTERNACIONAL DE ENSINO DA MATEMÁTICA

ULBRA – Canoas – Rio Grande do Sul – Brasil.

04, 05, 06 e 07 de outubro de 2017

Minicurso

GEOGEBRA COMO FERRAMENTA PARA O ENSINO DE ESTATÍSTICA

Maria Elaine dos Santos Soares¹

Vinicius Carvalho Beck²

Educação Matemática, Tecnologias Informáticas e Educação à Distância

Resumo: O objetivo deste minicurso é proporcionar aos participantes a apresentação de algumas funções básicas do GeoGebra que podem ser usadas no ensino de conceitos estatísticos, como por exemplo, a regressão estatística. A metodologia utilizada para a realização do minicurso será a apresentação de um exemplo de aplicação do conceito de regressão estatística utilizado para a previsão do comprimento de uma barra de ferro, considerando os dados de comprimentos anteriores com variações de temperatura e, posteriormente, para a previsão da população brasileira para o ano de 2020, a partir de dados da população brasileira de anos precedentes. Em um segundo momento, os participantes coletarão dados e realizarão os mesmos procedimentos computacionais, de forma a obter projeções populacionais para os países escolhidos. No que se refere a este trabalho, pode-se dizer que o GeoGebra é um recurso digital reutilizável e que pode ser usado para a aprendizagem do conceito de regressão linear (dentre vários outros conceitos estatísticos). Sendo assim, podemos dizer que o GeoGebra é um Objeto Virtual de Aprendizagem (OVA) que pode ser utilizado para aprendizagem para construção e análise de curvas de regressão. Espera-se que, ao final do curso, os participantes dominem tecnicamente o processo de obtenção dessas curvas considerando-se a análise dos dados do gráfico, bem como, sejam capazes de construir um posicionamento argumentativo a respeito da utilização da tecnologia GeoGebra em sala de aula, e mais particularmente, sobre o ensino de conceitos estatísticos.

Palavras Chaves: GeoGebra. Ensino. Regressão Estatística.

Introdução

O GeoGebra é um programa computacional disponibilizado gratuitamente para *download* na internet (<u>https://www.geogebra.org/</u>). Ele é comumente utilizado para realizar cálculos aritméticos, simplificações algébricas, plotagens gráficas e operações matemáticas mais avançadas de álgebra linear e cálculo diferencial.

O objetivo do minicurso é proporcionar aos participantes a apresentação de algumas funções básicas do GeoGebra que podem ser usadas no ensino de conceitos estatísticos, como por exemplo, a regressão estatística.

Kenski (2007) destaca que as novas gerações, principalmente nascidas a partir dos anos 1990, convivem de forma natural com computadores e outros dispositivos eletrônicos, cada vez mais avançados e compactos. Talvez por isto, segundo a Kenski

¹ Doutora em Ensino de Ciências e Matemática. Instituto Federal Sul-rio-grandense Campus Pelotas – Visconde da Graça. messoares@gmail.com

² Mestre em Educação. Instituto Federal Sul-rio-grandense Campus Pelotas – Visconde da Graça. vonoco@gmail.com

(2007), as crianças e adolescentes são hoje os maiores usuários de todo este aparato tecnológico. A autora inclusive utiliza o termo "especialista" para qualificar o grau de conhecimento que estas novas gerações possuem a respeito das novas tecnologias.

Abar e Barbosa (2008) afirmam que um dos maiores desafios da escola atualmente é incluir a internet como uma ferramenta na construção do conhecimento na escola. Este é um dos trabalhos mais difíceis nesse sentido, já que exige pesquisa, planejamento, e igualmente, observação das limitações de infraestrutura das escolas. A própria manipulação das ferramentas virtuais em vários casos também pode constituir um desafio para os educadores, que precisam cada vez mais adaptar-se às novas tendências tecnológicas, e conseguir fazer com que as novas tecnologias cheguem até à escola, e até o aluno.

Uma ideia interessante para se desenvolver é a de que o uso da internet na educação também exige reformulação metodológica, afinal, segundo as ideias defendidas por Borba e Penteado (2001), a utilização do computador apenas para pesquisas *online* ou resolução de problemas que podem ser resolvidos de maneira concreta (isto é, sem uso de computadores), não representa nenhum grande avanço em termos pedagógicos. É necessário, e cada vez mais urgente, experimentar a internet como uma ferramenta de construção de conceitos, estudando plena e exaustivamente suas possibilidades, e por isso, ainda há muita pesquisa para ser realizada nesse sentido.

O GeoGebra se enquadra, em termos de novas tecnologias, no que se tem chamado de *Objeto Virtual de Aprendizagem* (OVA). Spinelli (2005) define OVA como "um recurso digital reutilizável e que auxilia na aprendizagem de algum conceito", estimulando o desenvolvimento das capacidades pessoais, como imaginação e criatividade.

No caso deste trabalho, podemos dizer que o GeoGebra é um recurso digital reutilizável e que pode ser usado para a aprendizagem do conceito de regressão linear (dentre vários outros conceitos estatísticos). Sendo assim, podemos dizer que o GeoGebra é um OVA que pode ser utilizado para aprendizagem para construção e análise de curvas de regressão.

Metodologia

A metodologia utilizada para a realização do minicurso será a apresentação de um exemplo de aplicação do conceito de regressão estatística utilizado para a estimar VII CONGRESSO INTERNACIONAL DE ENSINO DA MATEMÁTICA – ULBRA, Canoas, 2017 a variação de comprimento de uma barra metálica, a partir da variação de temperatura. Também será realizada um experimento computacional de previsão da população brasileira para o ano de 2020, a partir de dados da população brasileira de anos precedentes. Será necessário o uso de computadores e um retroprojetor para a explicação inicial.

Em um segundo momento, os participantes coletarão dados de outros países e realizarão os mesmos procedimentos computacionais, de forma a obter projeções populacionais para os países escolhidos.

O Conceito de Regressão Estatística

Um modelo de regressão possibilita avaliar a magnitude da variação em uma variável decorrente de determinada variação em outra variável. Assim, a regressão simples ocorre quando escolhida uma variável independente, é analisado o efeito dessa variável em relação uma variável dependente. Quando são consideradas duas ou mais variáveis independentes sobre uma variável dependente, a regressão é dita múltipla. Segundo Mann (2015, p. 631), "Um modelo de regressão corresponde a uma equação matemática, que descreve a relação entre duas ou mais variáveis". Se o modelo de regressão simples (duas variáveis) fornecer uma relação linear entre essas variáveis, ele é denominado de regressão linear.

Para exemplificar a relação linear entre duas variáveis, utiliza-se, aqui, uma tabela que mostra variação do comprimento de uma barra de aço, de acordo com a variação da temperatura.³

Tabela 1 – Temp	peratura 2	X Compri	mento de	e uma Ba	rra de Aço
Temperatura (°C)	10	15	20	25	30
Comprimento (mm)	1003	1005	1010	1011	1014
Eanta: Cr	acna (20	00 - 15	5 adapta	vdo)	

Fonte: Crespo (2009, p. 155, adaptado)

Esses dados possibilitam o ajustamento de uma reta, imagem da função definida por y = ax + b, em que "a" e "b" são parâmetros, y é a variável independente e x a variável dependente.

³ Exercício proposto em Crespo (2009, p. 155, adaptado).

Etapas

A primeira etapa consiste na *coleta de dados*. Na sequência, calculam-se os parâmetros "a" e "b".

$$\mathsf{a} = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}, \qquad \mathsf{b} = \bar{y} - \mathsf{a}\bar{x}$$

em que,

n é o número de observações;

 $\bar{x} = \frac{\sum x_i}{n}$ (média dos valores de x_i) $\bar{y} = \frac{\sum y_i}{n}$ (média dos valores de y_i

Constrói-se, então, a tabela de valores (Tabela 2), a partir dos dados da Tabela

1.

x _i	y _i	$x_i y_i$	x_i^2
10	1003	10030	100
15	1005	15075	225
20	1010	20200	400
25	1011	25275	625
30	1014	30420	900
$\sum 100$	$\sum 5043$	$\sum 101000$	$\sum 2250$

Tabela 2 - Valores para ajustamento da reta

Fonte: o exercício

 $a = \frac{5 \times 101000 - 100 \times 5043}{5 \times 2250 - 10000} = \frac{700}{1250} = 0,56$ $\bar{x} = \frac{100}{5} = 20$ $\bar{y} = \frac{5043}{5} = 1008,6$

b= 1008,6 - 0,56 × 20 = 997,40

Dessa forma, a reta de ajustamento a essas variáveis tem por equação:

y = 0,56*x* +997,40. (Equação 1)

Pretende-se calcular, também, o valor estimado do comprimento da barra para a temperatura de 18°C e 35°C. Substituindo esses números na Equação 1, $\hat{y} = 0,56x +997,40$ (\hat{y} corresponde ao valor estimado de *y*), determinam-se as medidas de 1007,48 mm e 1017 mm, respectivamente. A segunda etapa do exercício consiste em obter a equação da reta e os valores estimados do comprimento da barra por meio do software Geogebra. Em primeiro lugar, mostramos na Figura 1 como abrir a planilha no aplicativo. No ícone *Exibir*, clicar em *Planilha*.

C Otto Other																		1.0	100
Arganys Editar	Exb	(i)	Opções Fe	nament	tas Jar	iela /	Auda.												Er#s
R •^	101	.0 H	mela de Ág Ionéha exela CAS	HOLE .		0 0	911-5109-0 911-8109-0 911-8109-0	2	12	¢									
	0 <34148> 0	T D D D D D D D D D D D D D D D D D D D	anela de Vie anela de Vie ensta de Vie ensta de Via totecolo de C actuadora d actuadora d actuado arapo de En ayent	oalinagi oaktagi oaktagi Constro te i Yosh te da	ln lo 2 lo 3D qûv aserdas		51+5149+1 51+914+1 61-5149+1 51+5149+1 51+5149+1	t	5										
	RU	AR	huvitse Jana socikular Ta	tas doc oc	Otajentos	0	n1+F 91+R		-										
				4	2		4	2		8 1	2	2	4	1	्र	÷.	3 9 3	- 10	55
									•										
				_	_				+		-			_	+			+	
Entrada	_					_		3	-8		 1								Lum

Figura 1 – Abrindo planilhas no GeoGebra

Na Figura 2, podem ser visualizados, no canto direito, os dados sendo inseridos na planilha. Esta é segunda etapa, que constitui o que se chama de *organização de dados*.

Figura 2 - Inclusão dos Dados na Planilha

A terceira etapa é o *processamento de dados*. Na Figura 3, apresenta-se a localização do ícone que permite a análise bivariada, isto é, a análise de duas

variáveis, o qual possibilita a construção de curvas de regressão. Clicar em abrindo as possibilidades de "Análise Univariada", "Análise Bivariada", "Análise Multivariada" e "Calculadora de Probabilidades".

Figura 3 – Análise Bivariada

No exemplo citado na Tabela 1, tomam-se como variáveis a temperatura, no eixo das abscissas e comprimento, no eixo das ordenadas.

A Figura 4 mostra como é feita a seleção dos dados enquanto estão sendo preparados para a obtenção da curva de regressão. Considerando o exemplo que apresenta duas variáveis, selecionar as informações já inseridas no canto direito da

k [1,2]	Σ.							0	C.
Janela de Álgebra	X	Janela de Visualiza	ição	×	▼ Pla	milha			8
		C Fonte dos Dados		×	fx	N / [E]		-	
		-				A	В	С	1
		Análise Bivar		1	10	1003		1	
						15	1005		
		100	1.000		3	20	1010		
		57	57		-4	25	1011		
		A1:A5	81:85		5	30	1014		
		10	1003	-	6				
		15	1005	-	7				
		20	1010	-	8				
		30	1014	-	9				
					10				
					11				
				-	40				

Figura 4 - Selecionando dados para Análise Bivariada

A planilha mostra que os números reaparecem, para confirmação, no centro da tela. A quarta etapa é a análise de dados. Ela feita quando o usuário clica em analisar, na tela da Figura 4, aparecendo o plano cartesiano xy, com os pares ordenados

representados como pontos isolados, conforme é mostrado na Figura 5.

Figura 5 – Dados do comprimento da barra de aço em função da temperatura

A disposição gráfica dos pares ordenados é chamada de diagrama de dispersão e permite detectar a relação entre as duas variáveis envolvidas no exercício. Pela forma desse diagrama, pode-se observar uma correlação retilínea, a qual permite o ajustamento de uma reta aos pontos do referido diagrama. Na Figura 6, apresentase a curva de regressão, mais precisamente, a curva de regressão linear. Observa-se também que, no canto esquerdo inferior, é possível alterar essa configuração e obter outros tipos de curvas, tais como logarítmica, polinomial, etc. Essa curva é obtida clicando-se no ícone *Modelo de Regressão*, que aparece na parte inferior da Figura 6.

Figura 6 - Curva de Regressão Linear

A equação da reta obtida na Figura 6, y = 0.56x + 997.40, confere os parâmetros obtidos, por meio de fórmulas matemáticas, na Equação 1.

Na Figura 7 está ilustrado o procedimento para realizar projeções, a partir dos dados empíricos já existentes. No caso do exemplo aqui apresentado, se fará a conferência dos dados calculados. Em *Avaliar Simbolicamente*, escrever a projeção desejada para a variável x, obtendo a variável \hat{y} .

Figura 7 – Projeção do comprimento para as temperaturas de 18ºCe 35°C

Assim, por meio do software GeoGebra confirmam-se os valores calculados a partir da Equação 1 da reta. A próxima etapa consiste em desenvolver atividades com os participantes do minicurso, utilizando o GeoGebra para determinar a curva de regressão linear e a estimativa populacional brasileira e de outros países para 2020. O gráfico da Figura 8 fornece dados relativos ao crescimento populacional do Brasil, adaptado de Tibulo, Carli e Dullius (2012, p. 3). Esses números, pela forma do diagrama, possibilitam o ajustamento de uma reta.

Figura 8 – Crescimento Populacional

Fonte: Tibulo, Carli e Dullius (2012, p. 3, adaptado)

Estes experimentos constituem-se, apenas, em uma pequena amostra de análise estatística possível com o uso do GeoGebra. Existem várias outras possibilidades, tanto para análises descritivas quanto para análises inferenciais.

Considerações Finais

O software GeoGebra já tem sido bastante utilizado em Geometria Plana, Espacial e Analítica. No entanto, espera-se que, ao final do curso, os participantes dominem tecnicamente o ensino de conceitos estatísticos, principalmente, no que se refere ao processo de obtenção de curvas de regressão, desde a coleta de dados até a análise de gráficos e, além disso, construam um posicionamento crítico a respeito da utilização da tecnologia GeoGebra em sala de aula.

Referências

ABAR, C. A.; BARBOSA, L. M.. **Webquest: um desafio para o professor!**. Editora Avercamp, São Paulo, 2008.

BORBA, M.C.; PENTEADO, M. G. Informática e Educação Matemática. Editora Autêntica, Belo Horizonte, 2001.

CRESPO, Antônio Arnot. Estatística Fácil. 19. ed. atual. São Paulo: Saraiva, 2009.

KENSKI, V. M. Educação e Tecnologias: o Novo Ritmo da Informação. Editora Papirus, Campinas, 2007.

MANN, Prem S.**Introdução à Estatística.** Trad. Teresa Cristina Padilha de Souza. 8. ed. Rio de Janeiro: LTC, 2015.

TIBULO, C.; CARLI, V.; DULLIUS, A. I. S. Evolução Populacional do Brasil: Uma Visão Demográfica. **Scientia Plena**, v.8, n.4, p.1-10, 2012.

SPINELLI, W. Aprendizagem Matemática em Contextos Significativos: Objetos Virtuais de Aprendizagem e Percursos Temáticos. Dissertação (Mestrado em Educação Matemática) – Faculdade de Educação, Universidade de São Paulo, 2005.