XXIII fórum de pesquisa científica e tecnológica

Caracterização das gorduras de *spreads* por Ressonância Magnética Nuclear de Hidrogênio

Introdução

As margarinas e as manteigas, assim como outros produtos alimentícios utilizados como acompanhamento em pães e bolos, são genericamente chamados de spreads. Ambas são alimentos ricos em triglicerídeos, cuja caracterização pode ser empregada para avaliar a origem, o estado de conservação e as propriedades nutricionais. Dois parâmetros clássicos empregados para caracterizar os óleos e as gorduras são os índices de iodo e de saponificação, os quais são normalmente estimados métodos titulométricos clássicos. por Alternativamente, a RMN pode ser usada com vantagens como a rapidez e o baixo consumo de amostras e insumos (SANTOS et al., 2023). Neste trabalho, os índices de iodo e de saponificação das gorduras de margarinas e de manteigas foram estimados por RMN de Hidrogênio.

Metodologia

As amostras foram fundidas e filtradas através de sulfato de sódio anidro e, a seguir, dissolvidas em $CDCl_3$. Os espectros foram obtidos em um espectrômetro Varian Oxford 400 MHz. A massa molar média (M_M) e os índices de iodo (I_I) e de saponificação (I_S) foram estimados a partir dos dados dos espectros de RMN- 1 H pelas equações 1 a 3 respectivamente, nas quais A_i são as áreas dos multipletos com deslocamentos químicos i.

$$M_M = 218 + 78 \times \frac{A_{5,3}}{A_{2,3}} + 42 \times \frac{A_{2,7-1,3}}{A_{2,3}}$$
 (1)
 $I_I = \frac{76.142,4}{M_M} \times \frac{A_{5,3}}{A_{2,3}}$ (2)
 $I_S = \frac{168.330}{M_M}$ (3)

Eduarda Guimarães de Lucena Samuel José Santos Luiz Antonio Mazzini Fontoura Centro de Pesquisa em Produto e Desenvolvimento Universidade Luterana do Brasil luiz.fontoura@ulbra.br

Resultados e Conclusões

Os espectros de RMN-¹H e os principais resultados são apresentados na Figura 1 e na Tabela 1 respectivamente.

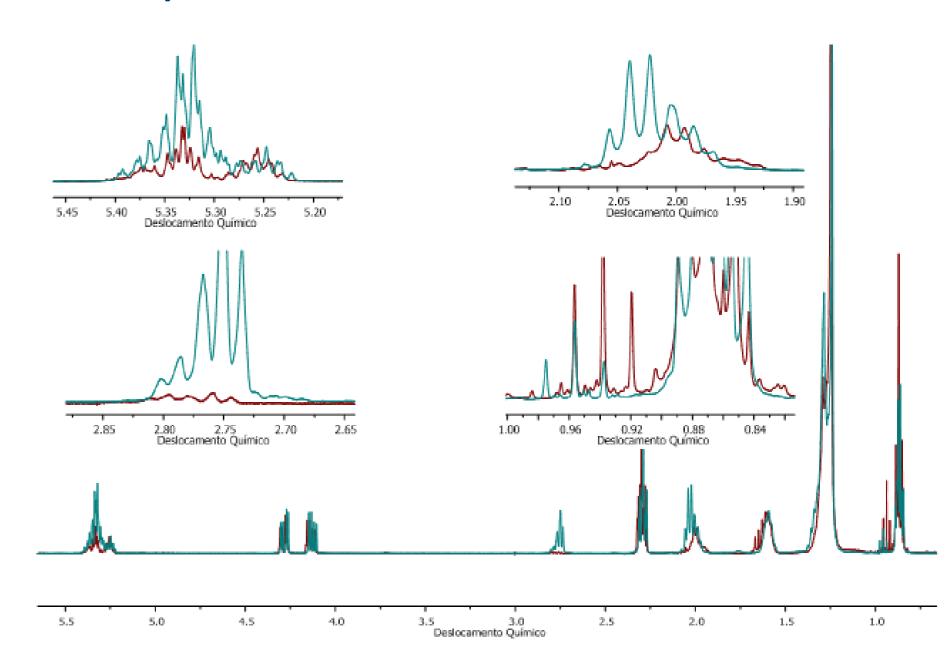


Figura 1. Espectros de RMN-¹H das gorduras de uma amostra de manteiga, azul, e de uma de margarina, vermelho (Varian Oxford 400 MHz, CDCl₃).

Tabela 1. Massa molar média dos triglicerídeos (M_M) , índices de iodo (I_I) e de saponificação (I_S)

	M _M (g mol ⁻¹)	I ₁ (g I ₂ / 100 g)	I _s (mg KOH / g)
Margarina 1	840 ± 13	95 ± 4	200 ± 3
Margarina 2	834 ± 13	91 ± 4	202 ± 3
Óleo de soja	872 ± 3	129,4 ± 0,7	193,1 ± 0,1
Manteiga 1	726 ± 9	25 ± 1	232 ± 3
Manteiga 2	734 ± 6	29 ± 3	229 ± 2

A menor M_M e, portanto, maior I_S das manteigas pode ser atribuída à presença de ácido butírico na gordura do leite, matéria prima na obtenção da manteiga, que apresenta, também, teores mais baixos de ácidos graxos insaturados, o que explica o menor I_I .

Referência: SANTOS, Samuel José; LUCENA, Eduarda Guimarães de; FONTOURA, Luiz Antonio Mazzini. Caracterização das gorduras de spreads por ressonância magnética nuclear de hidrogênio. In: EVANGELISTA-BARRETO, Norma Suely; CORDEIRO, Carlos Alberto Martins (org.). Ciência e Tecnologia de Alimentos: o avanço da ciência no Brasil, Vol. 4. 1. ed. Guarujá: Editora Científica Digital, 2023. p. 54–63.