

MOSTRA DAS CIÊNCIAS E INOVAÇÃO

FÓRUM DE PESQUISA CIENTÍFICA E TECNOLÓGICA

Citotoxicidade dos fios ortodônticos estéticos: estudo in vitro

*Viecilli, A; Gerzson, DRS; Freitas, MPM.

UNIVERSIDADE LUTERANA DO BRASIL CURSO DE ODONTOLOGIA - CANOAS/RS PROGRAMA DE PÓS-GRADUAÇÃO. MESTRADO

INTRODUÇÃO

Os fios ortodônticos ficam longos períodos na cavidade oral e, por isso, não devem permitir a liberação de seus materias nem provocar efeitos adversos. A composição bem como o recobrimento dos fios estéticos tem influência direta na biocompatibilidade dos mesmos. Os ensaios in vitro sobre citotoxicidade são etapas prévias necessárias para a segura utilização in vivo de qualquer material.

OBJETIVO

Testar a hipótese nula de que os fios ortodônticos estéticos não são tóxicos para fibroblastos de ratos.

METODOLOGIA

AMOSTRA

- 160 segmentos de fios ortodônticos estéticos 5mm / condições de manipulação assépticas/ único operador C(-) = livre de toxicidade = cultivo celular
- C(+) = hipoclorito a 1%.

CULTURA DE CÉLULAS (fibroblastos NIH / 3T3)

- imersão em micropoços com meio de cultura DMEM
- Incubação em estufa
- Avaliação nos tempos: 24, 48h, 7 e 28 dias para a extração de substâncias citotóxicas.
- Após, células foram expostas ao meio o qual continha os extratos por 4 horas

ANÁLISE DA CITOTOXICIDADE

Análise da Viabilidade celular (MTT Teste)

ANÁLISE ESTATÍSTICA

-Testes Kruskal-Wallis, Friedman e Mann-Whitney com p<0,05.

Tabela 1: Grupos Experimentais.

GRUPO	MARCA COMERCIAL	TIPO DE FIO/ CARACTERÍSTICAS	COR	n
1	TP orthodontics® (Optis) (TP) (LaPorte,texas,EUA)	Fio estético / Fibra de vidro	Transparente	4
2	American Orthodontics®(Ever white) (AMOe) (Sheboygan, WI,EUA)	Fio estético / Fio metálico revestido	Branco	4
3	American Orthodontics® (AMOm) (Sheboygan, WI,EUA)	Fio metálico / Fio metálico	Cinza	4
4	Orthotechnology® (Tooth tone) (ORTHe) (Tampa, Florida,EUA)	Fio estético / Fio metálico revestido por plástico	Cor de dente	4
5	Orthotechnology® (ORTHm) Fio metálico (Tampa, Florida,EUA) Fio metálico		Cinza	4
6	Forestadent® (Titanolcosmetic®)(FORESTe) (Pforzheim,Baden-Württemberg,Germany)	Fio estético / Fio metálico revestido com teflon	Branco	4
7	Forestadent®(FORESTm) (Pforzheim,Baden-Württemberg,Germany)	Fio metálico / Fio metálico /	Cinza	4
8	Eurodonto® estético (EUROe) (Curitiba,PR,Brazil)	Fio estético / Fio metálico revestido	Branco	4
9	Eurodonto® estético Ródio (EUROr) (Curitiba,PR,Brazil)	Fio estético / Fio metálico com banho de Ródio	Cinza	4
10	Eurodonto® (EUROm) (Curitiba,PR,Brazil)	Fio metálico / Fio metálico	Cinza	4
11	Controle positivo - C (+)	Hipoclorito de Sódio 1%	-	1
12	Controle negativo - C (-)	Crescimento celular	-	-

RESULTADOS

- Os resultados mostraram baixas médias de viabilidade celular, com diferença para o controle negativo (p<0,05), mostrando toxicidade celular; exceto para AMO, ORTHO e FORESTA em 7 dias e TP após 28 dias.
- Em 24h, todos os fios estéticos mostraram-se citotóxicos e semelhantes entre si (p>0,05), exceto o grupo TP e FORESTA, com as maiores médias de viabilidade celular.
- Após 48h e 7 dias, houve aumento nas médias, exceto para FORESTA, tanto que AMO, FORESTA e ORTHO passaram a ser semelhantes ao controle negativo (p>0,05).
- Nos 28 dias, os grupos apresentaram redução nas médias de viabilidade celular com p>0,05, exceto ORTHO, com a menor média de todos os grupos, em todos os tempos.

Tabela 2: Médias de Viabilidade celular dos diferentes grupos nos tempos avaliados.

GRUPO	MARCA	TIPO	TEMPO							
			24hs		48 hs		7dias		28dias	
			Media	DP	Média	DP	Media	DP	Media	DP
C (-)	-	-	0,970 ^A	0,297	0,926 ^A	0,195	0,884 ^A	0,260	0,722 ^A	0,239
Grupo 1	TP	Estético/	0,517 ^C	0,056	0,568 ^{□⊏}	0,120	0,652 ^D	0,118	0,632 ^{AB}	0,280
		Fibra de vidro								
Grupo 2	AMOe	Estético/	0,443 ^{Da}	0,122	0,536 ^{EFD}	0,143	0,806 ^{ABUC}	0,140	0,485 ^{BD}	0,110
		Metálico(NiTi)								
		Revestido								
Grupo 3	AMOm	Metálico(NiTi)	0,636 ^{ba}	0,151	0,636 ^{Ca}	0,098	0,838 ^{AD}	0,070	0,463 ^{bc}	0,046
Grupo 4	ORTHOe	Estético/(NiTi)	0,411 ^{Da}	0,154	0,457 ^{⊦a}	0,160	0,807 ^{ABC}	0,172	0,400 ^{Ca}	0,102
		Revestido plástico								
Grupo 5	ORTHOm	Metálico(NiTi)	0,537 ^{ba}	0,059	0,579 ^{CDE}	0,098	0,824 ^{ABD}	0,091	0,561 ^{Ba}	0,123
Grupo 6	FORESTe	Estético/(NiTi)	0,685 ^B a	0,177	0,671 ^в Са	0,131	0,875 ^{AD}	0,071	0,591 ⁵⁸	0,093
		Revestido plástico								
Grupo 7	FORESTm	Metálico(NiTi)	0,864 ^{AaD}	0,209	0,756 ^{sa}	0,140	0,868 ^{AD}	0,068	0,547 ^{bc}	0,073
Grupo 8	EUROe	Estético/(NiTi)	0,502 ^{CDa}	0,043	0,554 ^{EFD}	0,037	0,738 ^{BCC}	0,136	0,429 ⁶⁰	0,107
		Revestido								
Grupo 9	EUROr	Estético/(NiTi)com	0,441 ^{Da}	0,056	0,573 ^{CDED}	0,054	0,757 ^{b∪c}	0,115	0,505 ^{Bad}	0,133
		banho Rhodium								
Grupo 10	EUROm	Metálico(NiTi)	0,543 ⁸	0,044	0,594 ^{CDB}	0,038	0,704 ^{cc}	0,114	0,464 ⁸⁸	0,208
C (+)	-	-	0,044 ^E	0,004	0,082 ^G	0,052	0,042 ^E	0,069	0,107 ^D	0,102

Letras diferentes indicam diferença estatística com p<0,05. *Letras maiúsculas, análise vertical

**Letras minúsculas, analise horizontal

CONCLUSOES

- A hipótese nula foi parcialmente rejeitada, uma vez que os fios estéticos mostraram-se citotóxicos para fibroblastos de ratos na maioria dos tempos avaliados.
- A maioria dos fios mostraram as menores médias de viabilidade celular, portanto maior toxicidade, nas primeiras 24h, exceto os grupos da ORTHe, FORESTe e EUROe, em 28 dias;
- Houve diferença nos valores de viabilidade celular entre os fios estético e metálico da mesma marca, especialmente nas primeiras 24h. Isso demonstra que os componentes de revestimento estético apresentam papel importante na redução da viabilidade celular dos fios estéticos.
- As melhores médias de viabilidade nos diferentes tempos avaliados foram registradas para a marca FORESTe; exceto aos 28 dias, quando o destaque foi para o grupo TP, considerado não citotóxico por ter igualado ao controle negativo.
- Por fim, a maior toxicidade foi registrada para o fio da marca ORTHe, especialmente após 28 dias, onde alcançou o pico de toxicidade celular.

