

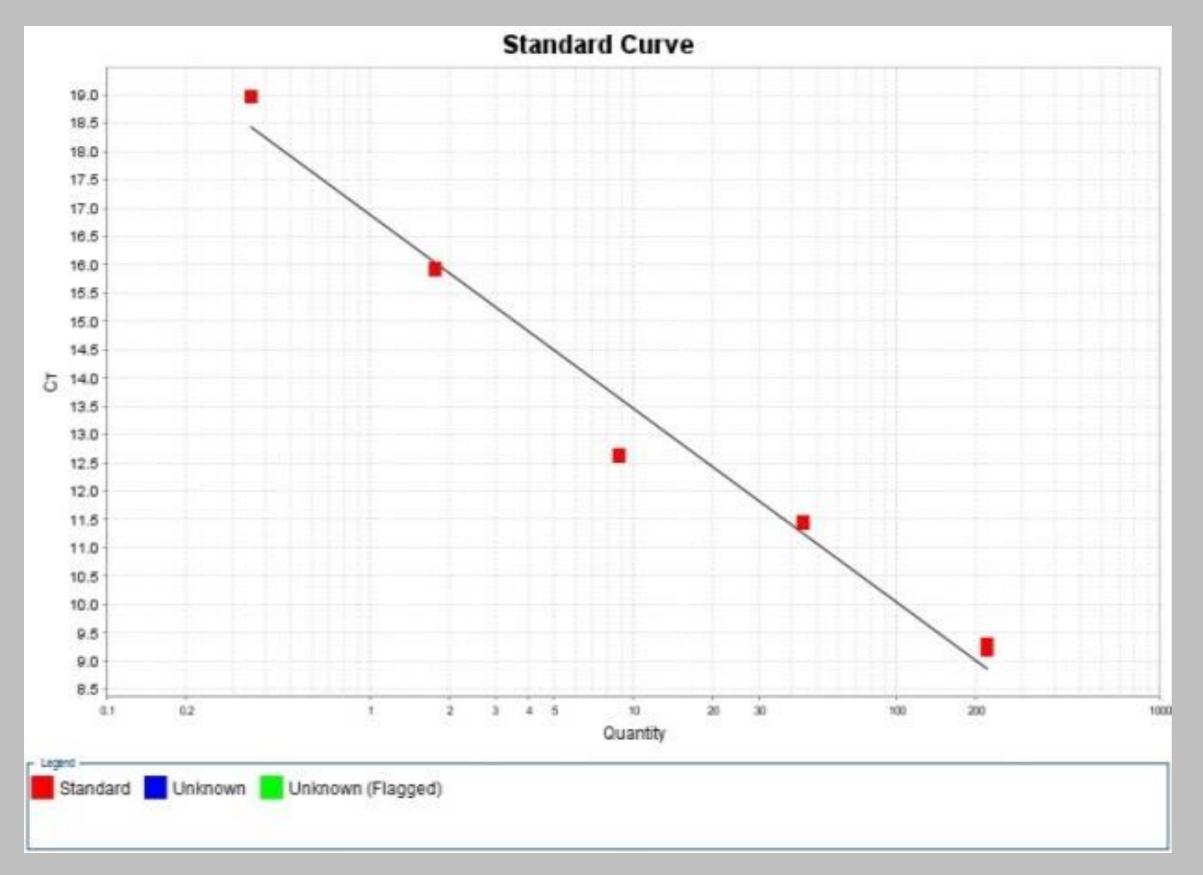
XXIII SALÃO DE INICIAÇÃO CIENTÍFICA E TECNOLÓGICA

DETECÇÃO DE DNA DE Mycobacterium tuberculosis POR PCR EM TEMPO REAL

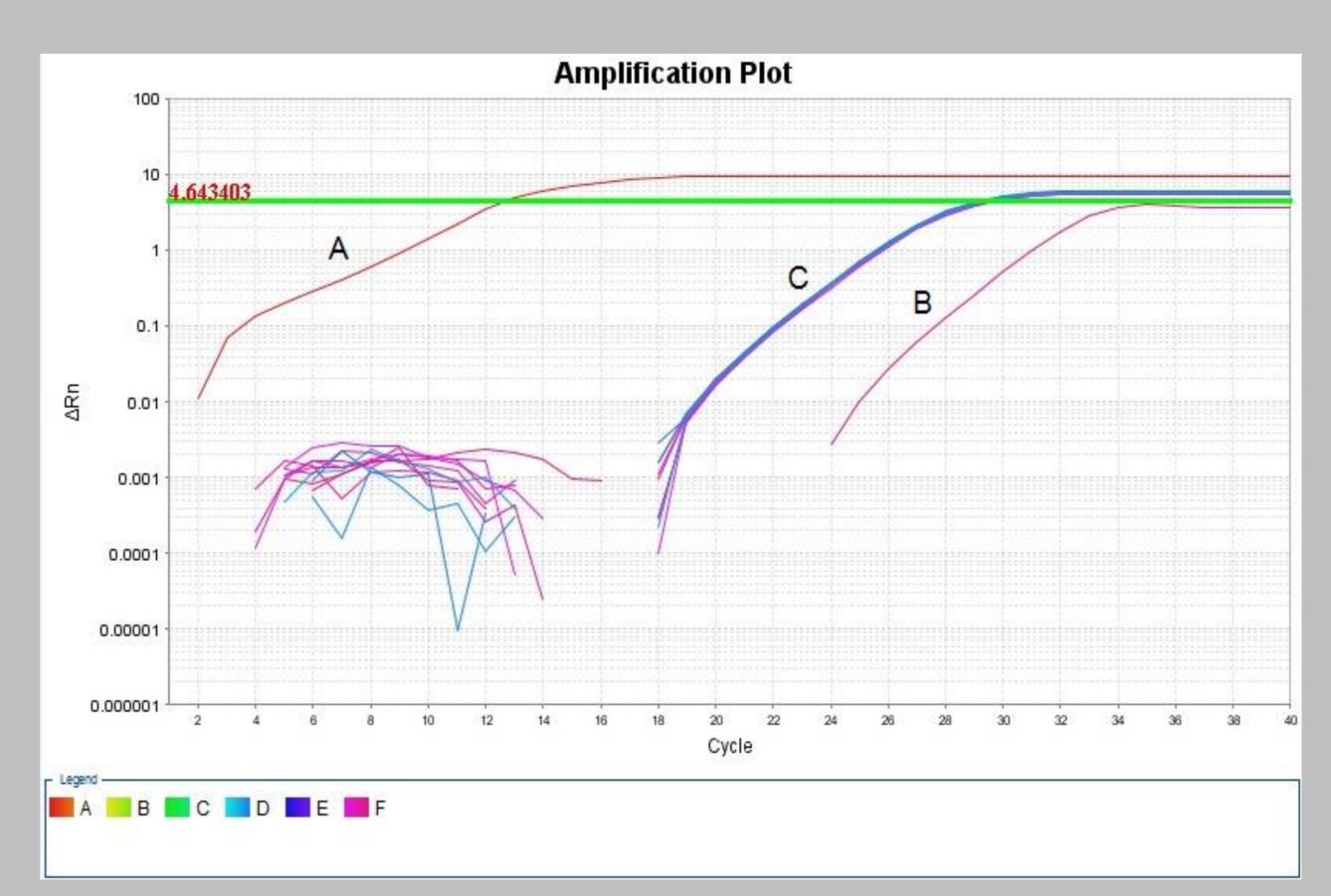
Morais C.L, Franciele¹; Bello L., Graziele ²; Rossetti, Maria Lúcia³.

¹Graduação de Biomedicina; ²Mestrado do programa PPGBiosaúde; ³Professora do curso de graduação de Biomedicina/Farmácia e PPGBiosaúde.

Introdução


A tuberculose (TB) é uma doença infectocontagiosa (UJVARIA, 2008). Segundo o Ministério da Saúde, foram registrados 66.796 casos novos de tuberculose em 2016. As técnicas que utilizam a amplificação de DNA por reação em cadeia de polimerase (PCR) são descritas como as mais sensíveis para o diagnóstico de tuberculose (OLIVEIRA et al., 2015). Os atrasos no diagnóstico da tuberculose, ocasionados pela restrição das técnicas de diagnóstico, afetam a incidência do bacilo na sociedade e influenciam o prognóstico dos indivíduos adoecidos, podendo levar à ocorrência de resistência a drogas e à morte (ACOSTA; BASSANESI, 2014). O objetivo do trabalho é detectar DNA de Mycobacterium tuberculosis por PCR em tempo real diretamente de amostras clínicas de escarro.

Metodologia


Foram utilizadas 30 amostras clínicas de escarro. Vinte delas, de pacientes com diagnóstico de TB confirmados por baciloscopia e cultura (10 positivas e 10 negativas). Dez amostras negativas utilizadas para padronizar a técnica, foram contaminadas com a cepa de referência de Mycobacterium bovis. Todas as amostras tiveram o DNA extraído pela mesma técnica e amplificados por PCR em tempo real através da detecção da sequência de inserção *IS6110* marcadas (fluoróforo) SYBR® Green. Para definir a sensibilidade analítica do teste, foi realizado o PCR com diluições seriadas de 1:10. A mistura de PCR foi feita em duplicata, contendo 5 μL de DNA de cada diluição em cada reação e 15 μL de master mix, totalizando o volume final de 20 μL por reação. A eficiência foi calculada pelo software StepOne versão 2.3.

Resultados

O teste detectou o DNA de M. tuberculosis até o limite de detecção de 14 UFC com uma média de CT de 27 ciclos. As amostras negativas não tiveram amplificação. Alteramos a temperatura de anelamento para 62°C, ao ajustar a concentração para 4 pmol de primers foi visto que o grau (intensidade) de inespecificidade diminui. Portanto foi padronizado a concentração de 4 pmol de primers. A curva padrão obteve a eficiência de 96,15%, 0,97 de R² (indica a proximidade de encaixe entre a linha de regressão linear da curva padrão e os dados de pontos individuais do CT), -3,418 de Slope (indica a eficiência da amplificação por ensaio de PCR) e Y- inter de 16, 87 (indica o CT esperado para a amostra).

Gráfico de amplificação por PCR em tempo real: A – controle positivo (H37rV); B – controle negativo da reação; C – amostras contaminadas com *M. bovis* de 1 a 10 extraídas pela técnica de Sonicação.

Conclusão

Todas as amostras positivas para tuberculose foram amplificadas e todas as 10 negativas não tiveram amplificação. Assim, a técnica mostrou ser promissora para uso na rotina laboratorial possuindo 100% de sensibilidade e especificidade.

Aprovado pelo comitê de ética (CEP ULBRA) sob o n° de registro: 2011-340H. Apoio financeiro: CNPq, FEPPS e ULBRA.

Referências

ACOSTA, L.M.W.; BASSANESI, S.L. The Porto Alegre paradox: social determinants and tuberculosis incidence. Revista Brasileira de Epidemiologia. Vol.17, 2014.

OLIVEIRA, L.G.L.D. et al. Proposed tuberculosis investigation and management protocol

in complex and recurrent fistula-in-ano, 2015. Disponível em:

http://www.sciencedirect.com/science/article/pii/S2237936315000283. Acessado em: 29 de maio de 2016. UJVARIA, S.C. História da disseminação dos microrganismos. Estudos avançados 22 (64), 2008. Disponível em: http://www.scielo.br/pdf/ea/v22n64/a11v2264.pdf. Acessado em: 23 de maio de 2017.