XXIV SALÃO DE INICIAÇÃO CIENTÍFICA E TECNOLÓGICA

Avaliação da Atividade Antioxidante e Teor de Vitamina C, Compostos Fenólicos e Flavonoides Presentes em Frutas Cítricas

BORSOI G.¹; CAMILLIS R.S.²; FERRAZ A.B.F.³

- 1 Aluno do curso de graduação em Farmácia Bolsista PIBIC/CNPq borsoi.guilherme@gmail.com
- 2 Aluno do curso de graduação em Farmácia aga743@agafarma.com.br
- 3 Professor do Curso de Farmácia/Ulbra e do Programa de Pós-graduação em
- Biologia Celular e Molecular Aplicada à Saúde/ULBRA alexandre.ferraz@ulbra.br

INTRODUÇÃO

Na atualidade, é comum o consumo de frutas, devido ao conhecimento popular e científico de seus benefícios à saúde e prevenção de diversas patologias. Um problema comum que participam na progressão de patologias é o estresse oxidativo. Os radicais livres, quando em excesso causam efeitos danosos no organismo, como a peroxidação dos lipídios de membrana e agressão à proteínas, enzimas, carboidratos e DNA, o que podem levar a algumas patologias como: doenças cardiovasculares, respiratórias, neoplasias e câncer As frutas cítricas são uma alternativa para o combate e prevenção de radicais livres no organismo, por possuírem em sua composição uma variação de compostos fenólicos e vitamina C.

OBJETIVOS

- Analisar o teor de compostos fenólicos e flavonoides das amostras de frutas cítricas;
- Determinar o teor de vitamina C nas amostras.
- Verificar o potencial antioxidante pelo ensaio com DPPH com as amostras.

METODOLOGIA

- Amostra: as amostras foram compradas em mercados de Viamão/RS.
- **Preparo das Amostras:** as amostras foram preparadas em métodos convencionais, na proporção 1:5, foram congeladas e após isso secadas em liofilizador.
- **Doseamentos Fenólicos e Flavonoides:** o teor de compostos fenólicos e flavonoides totais foi determinado quantitativamente pelo método de Folin-Ciocauteu e AlCl3, respectivamente.
- Doseamento Vitamina C: O doseamento de vitamina C foi realizado de acordo com a metodologia do manual do MAPA (2013) para determinação de ácido ascórbico em bebidas não alcoólicas.
- Atividade Antioxidante: A capacidade antioxidante foi determinada pelo ensaio com DPPH (2,2-difenil-1-picril-hidrazila) usando como padrão a quercetina.

REFERÊNCIAS

BEHLING, E. B.; SENDAO, M. C.; FRANCESCATO, H. D. C.; ANTUNES, L. M. G.; BIANCHI, M. L. P. Flavonoide quercetina: Aspectos gerais e ações biológicas. **Alimentos e Nutrição**, v. 15, n. 3, p. 285-292, 2004.

DEGASPARI, C. H.; WASZCZYNSKYJ, N. Propriedades antioxidantes de compostos fenólicos. **Visão Acadêmica**, v. 5, n. 1, p. 33-40, 2004.

DUZZIONI, A. G.; A. FRANCO, A. G.; DUZZIONI, M.; SYLOS, C. M. Determinação da atividade antioxidante e de constituintes bioativos em frutas cítricas. **Alimentos e Nutrição**, v. 21, n. 4, p. 643-649, 2010.

FREIRE, J.M.; ABREU, C.M.P.; ROCHA, D.A.; CORREA, A.D.; MARQUES, N.R. Quantificação de compostos fenólicos e ácido ascórbico em frutos e polpas congeladas de acerola, caju, goiaba e morango. **Ciência Rural**, v. 43, n. 12, p. 2291-2296, 2013.

RESULTADOS

A acerola mostrou maior teor de compostos fenólicos (155,36 EAG/g) (Tabela 01) e vitamina C e 99,50mg/g \pm 2,44 e a melhor atividade antioxidante (IC₅₀= 95,98 \pm 3,02) (tabela 03).

Tabela 01: Resultados do doseamento de fenólicos e flavonoides

Amostra	Fenólicos	Flavonoides
	mg/g EAG	mg/g EQ
Abacaxi	Não detectável	0,77 ± 0,01
Acerola	155,36 ± 1,32	1,21 ± 0,13
Goiaba	8,25 ± 3,81	0,63 ± 0,08
Jabuticaba	35,65 ± 3,32	Não detectável
Laranja	Não detectável	$0,44 \pm 0,02$
Limão	Não detectável	2,36 ± 0,11
Morango	25,42 ± 1,13	1,17 ± 0,03
Uva	18,30 ± 0,49	0.89 ± 0.10

Tabela 02: Resultados do doseamento de vitamina C

Amostra	Vitamina C (mg/g)
Abacaxi	2,59 ± 0,27
Acerola	99,50 ± 2,44
Goiaba	3,92 ± 0,22
Jabuticaba	1,95 ± 0,24
Laranja	3,66 ± 0,29
Limão	2,40 ± 0,21
Morango	1,54 ± 0,27
Uva	1,38 ± 0,01

Tabela 03: Resultados da atividade antioxidante frente ao radical livre DPPH das amostras

Amostra	DPPH (IC ₅₀ (μg/mL)
Quercetina (padrão)	18,22 ± 2,2
Acerola	95,98 ± 3,02 a, b
Jabuticaba	187,29 ± 6,07 b

Os asteriscos indicam as diferenças estatísticas encontradas para cada amostra a=t student (***p < 0,001), b=ANOVA (***p < 0,001)

CONCLUSÃO

Esses dados mostram que aparentemente a atividade antioxidante está mais diretamente ligada ao teor de compostos fenólicos do que aos teores de vitamina C.

