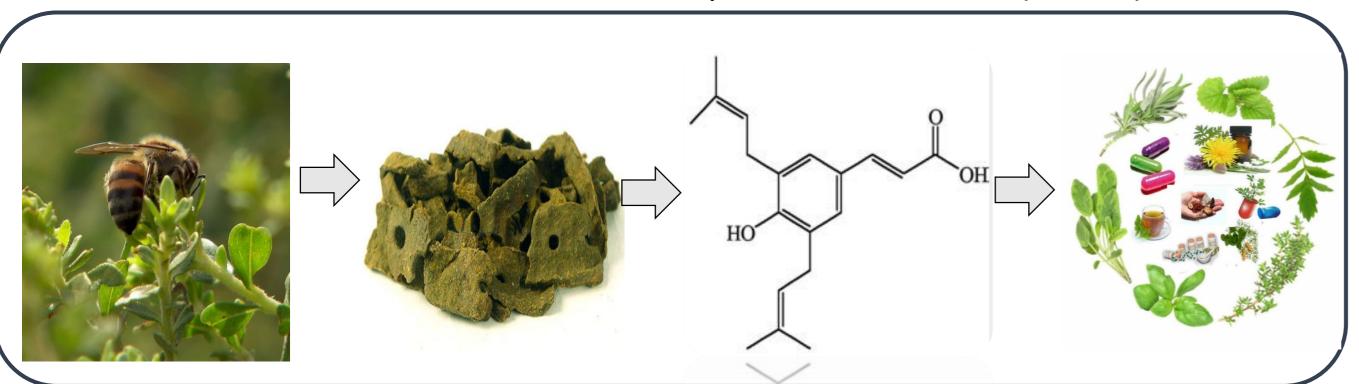


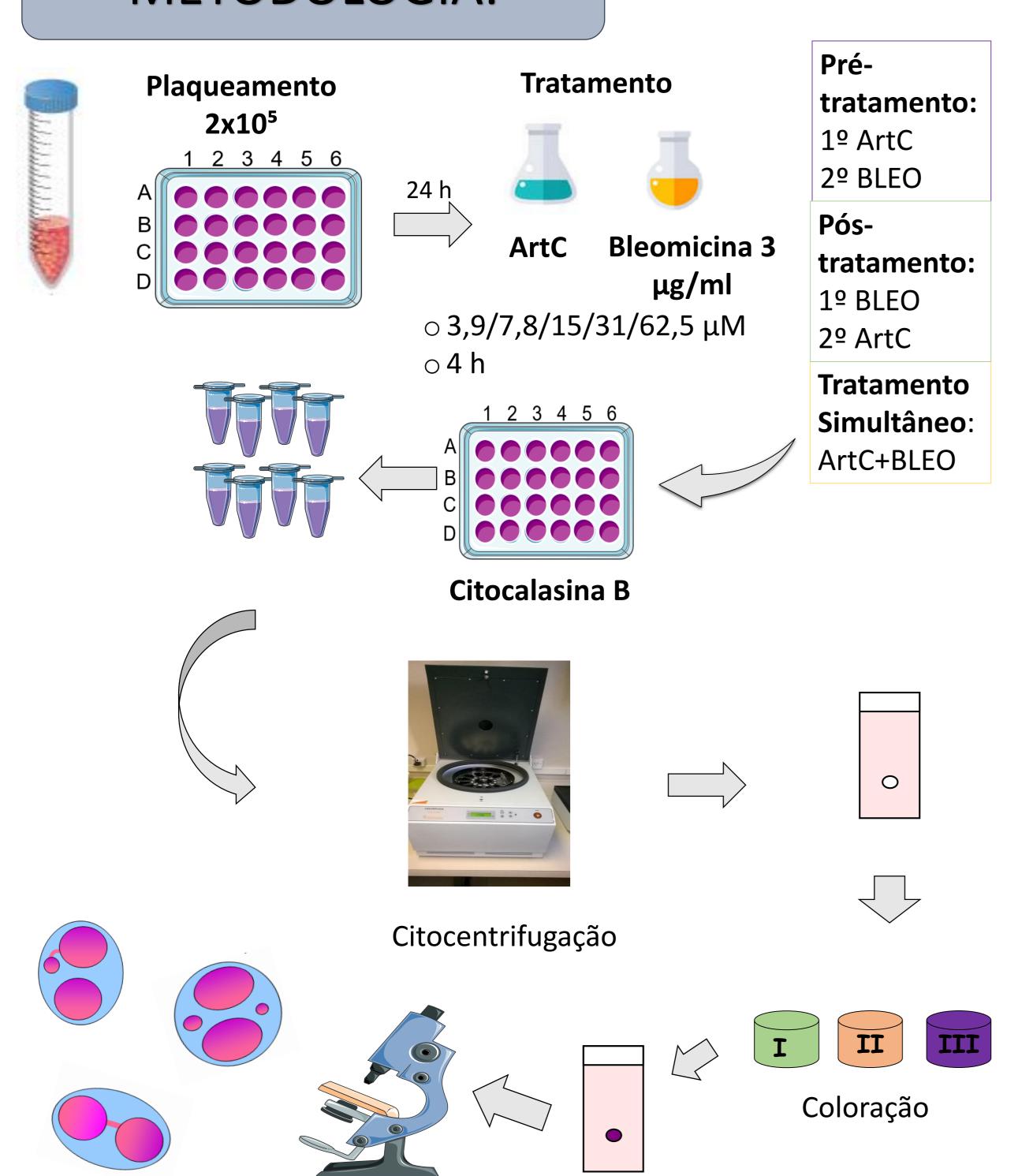
XXIV SALÃO DE INICIAÇÃO CIENTÍFICA E TECNOLÓGICA

AVALIAÇÃO DA ANTIMUTAGENICIDADE DO ARTEPELIN C, IN VITRO, NO TESTE DE MICRONÚCLEOS COM BLOQUEIO DA CITOCINESE (CBMN)

Jordana A. N. da Rosa ^{1,2}; Ana Paula de Souza¹; Mauricio Lehmann¹; Rafael Rodrigues Dihl¹


¹Laboratório de Toxicidade Genética, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBIOSAÚDE), Universidade Luterana do Brasil – ULBRA, Canoas, Brasil. ²Bolsista PIBIC-CNPq.

INTRODUÇÃO:


Boa parte dos medicamentos produzidos atualmente apresenta em sua composição algum principio proveniente de algum tipo de planta medicinal, o que leva a necessidade de avaliar os benefícios ou possíveis riscos que essas moléculas apresentam para a saúde humana.

O composto polifenólico Artepelin C (Art C - ácido 3,5-diprenil-4hidroxicinâmico), principal componente bioativo da própolis verde (extraída da Baccharis dracunculifolia), apresenta importantes atividades biológicas como antioxidante, indutor da apoptose e antitumoral, e devido a isso tem sido alvo de diversos estudos. Sendo assim, compostos naturais que atuem reduzindo ou removendo taxas de mutações são considerados antimutagênicos.

O presente estudo teve por objetivo avaliar o efeito protetor do Artepelin C contra a instabilidade cromossomal induzida por um agente clastogênico, utilizando o teste de micronúcleos com bloqueio da citocinese (CBMN).

METODOLOGIA:

Apoio Financeiro:

Análise

RESULTADOS:

Tabela 1: Frequência de danos cromossômicos após a exposição (4h) das células U-87MG aos diferentes protocolos de tratamento com ArtC e BLEO para avaliação da antimutagenicidade.

Concentrações ArtC	MN ^a	PN ^a	BrN ^a	% Redução
BLEO CN	73,00±12,73 ^{††} 17,00 ±1,41	8,00 ± 5,66 2,00 ±1,41	11,50± 4,95 [†] 2,50 ± 2,12	
Pré-tratamento				
3,9 μM + BLEO	40,0 ± 5,65 *	2,50 ±2,12	8,50 ± 2,12	58,9
7,8 μM + BLEO	43,0 ± 1,41 *	4,00 ±2,82	11,00± 2,12	53,6
15,6 μM+BLEO	57,5 ±10,60	2,50 ±3,53	15,50± 2,82	
31,2 μM+BLEO	57,0 ±9,89	6,00 ±2,82	17,50± 0,70	
62,5 μM+BLEO	43,0 ±12,72 *	2,00 ±1,41	10,50± 0,70	53,6
Pós-tratamento				
3,9 μM + BLEO	70,0 ± 5,65	6,00± 5,65	14,50± 0,70	
7,8 μM + BLEO	80,0 ± 8,48	9,50± 6,36	21,00± 2,82	
15,6 μM+BLEO	67,0 ± 2,82	8,00± 2,82	14,50± 9,19	
31,2 μM+BLEO	27,5 ± 9,19 **	4,00± 1,41	10,50± 6,36	81,2
62,5 μM+BLEO	44,5 ± 3,53 *	6,00 ± 1,41	10,50 ± 3,53	50,9
Tratamento Simultâneo				
3,9 μM + BLEO	62,5 ± 0,70	4,50 ± 3,53	11,50 ± 6,36	
$7.8 \mu\text{M} + \text{BLEO}$	56,0 ± 4,24	7,50 ± 4,94	14,00±15,55	
15,6 μM+BLEO	46,0 ± 5,65 *	5,50 ± 0,70	3,500 ± 0,70	48,2
31,2 μM+BLEO	42,0 ± 4,24 *	3,50 ± 3,53	15,00 ± 4,24	55,3
62,5 μM+BLEO	61,0 ± 4,24	$5,00 \pm 4,24$	11,50±10,60	

CP: controle positivo- BLEO (3 μg/mL); CN: controle negativo- DMSO 1%; MN: micronúcleos; BrN brotos nucleares ;PN: ponte Nucleoplasmática. * Significativamente diferente do CP *p<0,05; **p<0,01; Significativamente diferente do CN †p<0,05; ††p<0,01. ANOVA teste post-hoc Dunnet. aMédias obtidas em 500 células binucleadas analisadas.

CONCLUSÃO:

Os resultados preliminares sugerem que o ArtC modula a ação da genotoxina bleomicina (BLEO), nos diferentes protocolos de tratamento. Contudo, faz-se necessário um número amostral maior para confirmar os resultados obtidos até o momento.

REFERÊNCIAS:

FENECH, M. Cytokinesis-block micronucleus cytome assay. Nature Protocols, v. 2, n. 5, p. 1084-1104, 2007.

RESENDE, F. A., ALVES, J. M., MUNARI, C. C., SENEDESE, J. M., SOUSA, J. P., BASTOS, J. K., TAVARES, D. C. Inhibition of doxorubicin-induced mutagenicity by Baccharis dracunculifolia. Mutation Research, v. 634, p. 112-118, 2007.

BARBARIĆ, M., MIŠKOVIĆ, K., BOJIĆ, M., LONČAR, M.B., SMOLČIĆ-BUBALO, A., DEBELJAK, Z., MEDIĆ-ŠARIĆ, M. Chemical composition of the ethanolic propolis extracts and its effect on HeLa cells. Journal of Ethnopharmacology, v. 135, p. 772-778, 2011.

BARROS MP, LEMOS M, MAISTRO EL, LEITE MF, SOUSA JPB, BASTOS JK, et al. Evaluation of antiulcer activity of the main phenolic acids found in Brazilian green propolis. J Ethnopharmacol. 2008; 120:372-7.