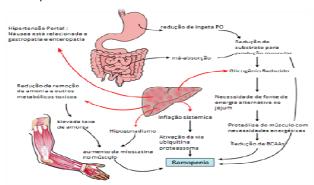


AVALIAÇÃO DA GENOTOXICIDADE

OCASIONADA PELA SARCOPENIA


Nathalia Mendes dos Santos¹, **Diogo Scalon²**; **Fernanda Brião Menezes Boaretto³**; Nayane Mendes dos Santos⁴.

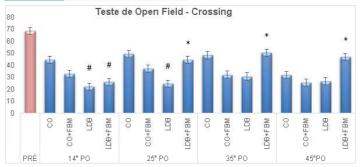
Jaqueline Nascimento Picada⁵

Laboratório de Genética Toxicológica - ULBRA

Introdução

Pesquisas clínicas vêm estudando diversas formas de tratamento para pacientes que possuem cirrose biliar secundária, sendo uma dessas, a sarcopenia com o auxílio de atividades físicas e laser terapia. Os resultados já expostos foram considerados adequados e com índice de entretanto, utilização alto, a biofotomodulação (FBM) no tratamento desses pacientes não possuiu clareza de melhoria de funcionalidade, e não há pesquisas apropriadas que medem os efeitos da FBM no desenvolvimento de sarcopenia em pacientes cirróticos. Todavia, é fundamental a realização de um estudo experimental antecedendo a utilização de biofotomodulação em pesquisas que lidam com pacientes com problemas cirróticos

Objetivos


Objetivo deste estudo foi avaliar os efeitos da biofotomodulação em ratos com cirrose biliar secundária induzida pela ligadura do ducto biliar (LDB).

Metodologia

Foram utilizados para a realização desse projeto 24 ratos machos Wistar, com idade de oito semanas e peso médio de 250 e 300 gramas, sendo eles divididos entre quatro grupos experimentais com seis animais em cada grupo, sendo estes grupos controle (CO), (CO+FBM), (LDB) e (LDB+FBM). o período de tratamento para a indução de sarcopenia durou 45 dias, após todos os animais foram mortos. Para avaliar o comportamento de atividade locomotora dos ratos, foi utilizado o teste open field, com a intenção de detecção de sarcopenia nos animais cirróticos. Para os testes de cometa foi coletado sangue periférico e fígado dos animais e foi coletada também, medula óssea para o teste de micronúcleos (MN), com o objetivo de avaliar danos de genotoxicidade e mutagenicidade.

Resultados

	ID	FD			- ~
Sangue			Grupo		Razão EPC/ENC ^b em 1000 eritrócitos por animal (média
со	32,0±13,0	32,0±13,0		(média ± DP)	± DP)
CO + FBM	36,3±16,6	36,3±16,6	со	1,8±0,8	1,4±0,5
LDB	31,8±12,3	31,8±12,3	CO + FBM	20140	1.210.2
LDB + FBM	29,7±8,1	29,7±8,1		2,8±1,0	1,2±0,3
Fígado			LDB		
со	89,0±11,6	70,0±7,0		4,2±1,3 **	1,1±0,3
CO + FBM	92,3±7,2	76,3±11,3	LDB+ FBM	3,3±0,5	1,2±0,1
LDB	165,7±32,6 **	90,3±1,5			
LDB + FBM	145,7±16,5 **	91,0±5,3			

Conclusão

O modelo experimental de cirrose biliar secundária induzida pela LDB não resultou em dano ao DNA. No teste de open field alegou que, o animal após a indução obteve maior locomoção e, houve melhoras nos arranjos das fibras musculares. Recomenda-se a utilização de biofotomodulação no músculo possa contribuir no tratamento de alterações musculares de pacientes cirróticos.

Referências bibliográficas

- Garrido M, Escobar C, Zamora C, Rejas C, Varas J, Párraga J, San Martín S, Montedonico S; Bili duct ligatura in young rats: A revisited animal model for biliary atresia. European Journal of Histochemistry
- Giusto M, Barberi L, Di Sario F, Rizzuto E, Nicoletti C, Ascenzi F, Renzi A, Caporaso N, D'Argenio G, Gaudio E, Musar A, Merli M; Skeletal muscle myopenia in mice model of bile duct ligation and carbon tetrachloride-induced liver cirrhosis. Physiological Reports 5 (7), 2017, e13153, doi: 10.1481/d/phy. 13153
- Montano-Loza AJ, Angulo P, Meza-Junco J, Prado CMM, Sawyer MB, Beaumont C, Esfandiari N, Baracos VE; Sarcopenic obesity and myosteatosis are associated with higher mortality in patients with cirrhosis. Journal of Cachexia, Sarcopenia and Muscle 2016; 7: 126–135 DOI: 10.1002/jcsm.12039

nathalia.mendes@rede.ulbra.br