

VALIDAÇÃO DA METODOLOGIA DE DETERMINAÇÃO DA MASSA MOLAR MÉDIA E DOS ÍNDICES DE IODO E DE SAPONIFICAÇÃO DE BIODIESEIS POR RMN-H

Introdução

O Biodiesel (BD) é um biocombustível renovável e biodegradável, utilizado em motores com ignição por compressão, possuindo vantagens sobre o diesel como maior ponto de fulgor e número de cetanos, e desvantagens como a tendência a cristalizar a baixas temperaturas e de se oxidar na presença de ar. O BD é formado por uma mistura de ésteres graxos. O índice de iodo (I₁), expresso como g de I₂ por 100 g de amostra, é uma forma de caracterizar o grau de instauração das cadeias. O índice de saponificação (I_s), por sua vez, é a massa de KOH em mg necessária para saponificar 1 g de amostra, utilizado como forma de identificação da natureza da matéria prima da qual o biodiesel foi preparado. O teor de ésteres graxos (T_{FG}) e o número médio de ligações duplas por grupo acila (N_D) podem ser fácil e rapidamente quantificados por RMN-1H. Com estas duas informações, é possível obter I₁ e I₅ Há relações quantitativas entre estes dois parâmetros e a massa específica (ρ) do BD. O objetivo deste trabalho foi a determinação dos índices de iodo e saponificação de biodieseis de óleos de soja e canola, de gordura de babaçu e de banha suína por RMN-¹H. A exatidão de ambas as propriedades foi avaliada por correlação com as massas específicas.

Metodologia

O T_{EG} , a M_M , o N_D , o I_S e o I_I de BD derivados de óleos de soja e canola, de gordura de babaçu e de banha suína foram determinados por RMN-¹H. Soluções de 50 mg de amostra e 40 mg de 1,2-diclorobenzeno em 0,5 mL de CDCl₃ foram preparadas. Os espectros foram adquiridos em um espectrômetro Varian Oxford 400 MHz (32 *scans* e *delay* de 2 s). Cada amostra foi preparada em triplicata e cada espectro foi adquirido e editado três vezes. Do espectro, são coletadas as áreas dos duplo-dupletos em 7,4 e 7,2 ppm, do multipleto em 5,4 ppm, do simpleto em 3,7 ppm e do tripleto em 2,3 ppm. A massa específica (ρ) de cada biodiesel foi determinada segundo a norma ASTM D1298-99. Alternativamente, foi calculada a partir dos valores obtidos para I_s e I_I conforme descrito por Phankosol e colaboradores, equação 1.1

$$ln\rho = -0.427 - \frac{10}{I_S} + \frac{83.38}{T} + \frac{3168.95}{T \times I_S} + \frac{11 \times I_I}{T \times I_S}$$
(1)

Cristiano de Aguiar Pereira Samuel José Santos Luiz Antonio Mazzini Fontoura

Centro de Pesquisa em Produto e Desenvolvimento Universidade Luterana do Brasil

Resultados e Conclusões

A Tabela 1 apresenta as propriedades dos biodieseis derivados de óleos de soja e canola, gordura de babaçu e banha suína obtidos a partir dos espectros de RMN-¹H.

Tabela 1 – Teores de ésteres graxos (T_{EG}) , massas molares médias (M_M) , índices de saponificação (I_S) e de iodo (I_I) dos biodieseis.

	T _{EG} (%)	M _M (g mol ⁻¹)	I _S (mg KOH g ⁻¹)) I ₁ (g I ₂ / 100 g)
soja	$97,8 \pm 0,6$	276 ± 4	203 ± 3	132 ± 2
canola	$98,0 \pm 0,9$	275 ± 6	204 ± 4	116 ± 2
babaçu	98 ± 1	220 ± 2	255 ± 2	$20,9 \pm 0,4$
banha	98 ± 1	277 ± 6	203 ± 5	75 ± 1

As massa específicas obtidas experimentalmente a $20~^{\circ}$ C foram lançadas em função dos valores calculados pela equação 1, Figura 1. Uma reta com índice de determinação (r^2) de 0,9835 foi obtida.

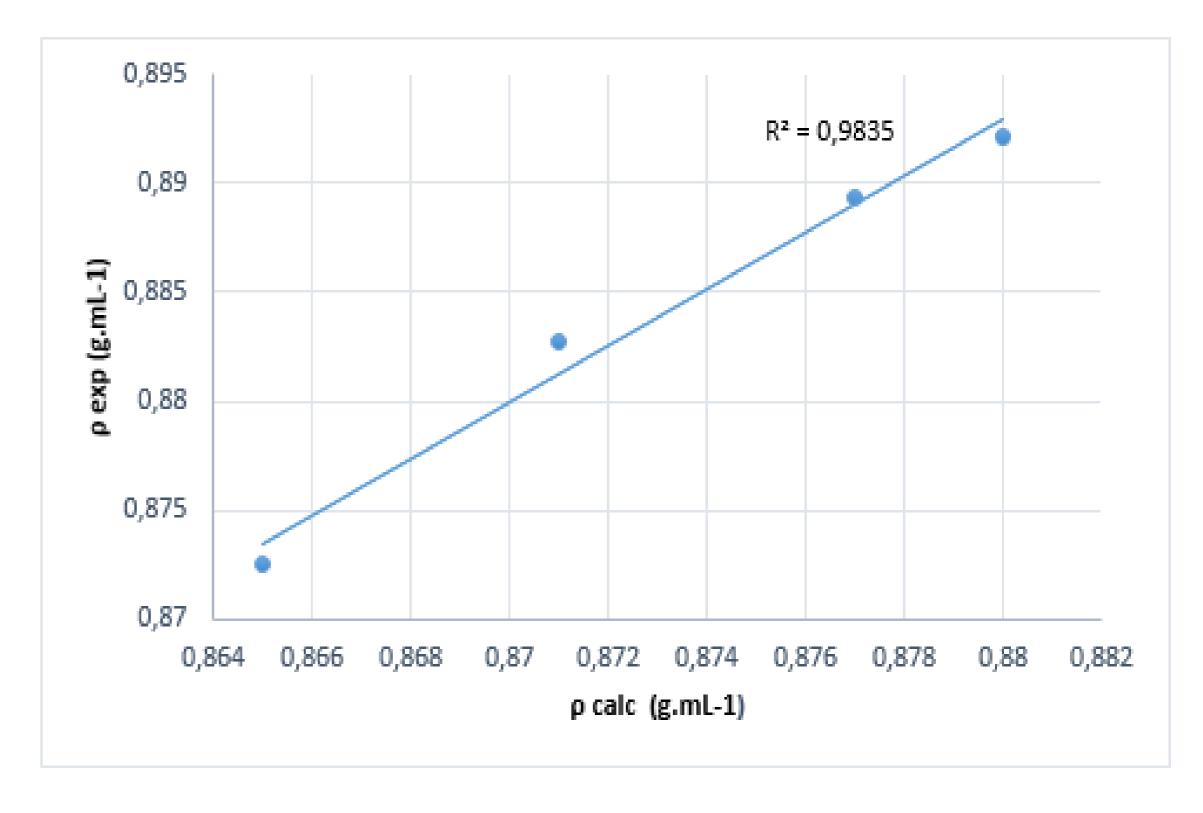


Figura 1 — Correlação entre as massas específicas (ρ) experimentais e calculadas.

A excelente correlação entre as massas específicas experimentais e calculadas constitui uma forte evidência da exatidão dos parâmetros obtidos por RMN-1H, a saber, M_M , I_S e I_I .