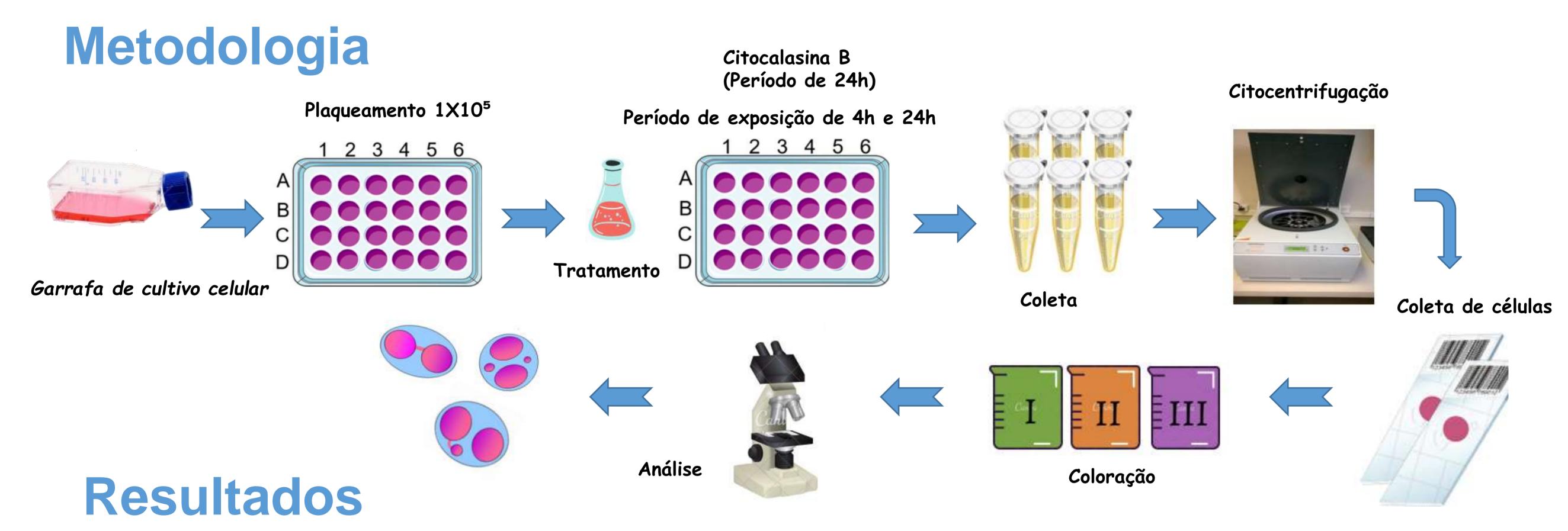


AVALIAÇÃO DA ATIVIDADE MUTAGÊNICA DA MIRICITRINA

RAMBOR, D^{1,2*}; DE SOUZA, AP¹; LEHMANN¹; M; DIHL, RR^{1,3}


- 1- Laboratório de Análise Tóxico-Genética Celular, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBIOSAÚDE), Universidade Luterana do Brasil ULBRA, Canoas, RS, Brasil.
- 2 Bolsista PROICT/ULBRA.
- 3 Programa de Pós-Graduação em Odontologia (PPGOdonto), Universidade Luterana do Brasil ULBRA, Canoas, RS, Brasil.

Introdução

A Miricitrina (MYR) (myricetin-3-O-rhamnoside), flavonol presente em folhas e frutos de plantas da família Myrtaceae, possui ação antiinflamatória, antidiabética e antioxidante em humanos¹. É importante avaliar a segurança do consumo de substâncias de origem natural para evitar riscos à saúde humana².

Objetivos

Nosso trabalho teve como objetivo avaliar a genotoxicidade da MYR em células CHO-K1 utilizando o Teste de Micronúcleos com Bloqueio da Citocinese (CBMN).

Os resultados obtidos até o momento apontam para ausência de genotoxicidade da MYR nas células CHO-K1 quando comparado ao controle negativo (CN) no período de 4h. Já no período de 24h, as concentrações de 21,25 µM e 42,5 µM aumentaram significativamente a indução de MN, quando comparado ao CN.

Tratamento 4h

Tabela 1: Efeitos da mutagenicidade do tratamento de 4h com a MYR no teste CBMN em células CHO-K1.

MN° 25,00 ±6,00 31,00 ±3,93 26,40 ±8,20 24,80 ±5,63	PN° 14,40 ±3,04 12,80 ±3,42 13,80 ±6,37	BN ^a 6,60 ±3,04 8,60 ±2,70 7,60 ±3,64
31,00 ±3,93 26,40 ±8,20	12,80 ±3,42	8,60 ±2,70
26,40 ±8,20		
	13,80 ±6,37	7 60 +3 64
24,80 ±5,63		7,00 ±3,04
	10,40 ±2,30	6,80 ±5,93
30,80 ±10,84	7,80 ±5,16	6,80 ±5,93
58,80 ±6,01***	13,40 ±2,40	14,40 ±5,22*
	Tratamento 24h	
MN°	PNª	BNª
20,75 ±2,06	8,00 ±3,16	7,75 ±2,21
26,75 ±7,32	9,75 ±1,70	11,25 ±0,95
26,50 ±7,32	13,00 ±2,44	2,75 ±1,25
33,75 ±3,40 **	10,75 ±2,87	3,50 ±1,73
59.00 ±17.20***	17,00 ±6,27*	10,25 ±4,78
, 		
	20,75 ±2,06 26,75 ±7,32 26,50 ±7,32	MN° PN° 20,75 ±2,06 8,00 ±3,16 26,75 ±7,32 9,75 ±1,70 26,50 ±7,32 13,00 ±2,44 33,75 ±3,40 ** 10,75 ±2,87

CN: controle negativo (DMSO1%); CC: controle da cultura (DMEM); CP: controle positivo (Bleomicina 6.46 μM); MN: micronúcleo; PN: ponte nucleoplasmática; BN: broto nuclear.

*Valores de média ± desvio padrão.

Tempo de exposição à MYR. CP e tratamentos foram comparados ao CN. ANOVA post hoc Dunnet.

*p < 0.05, **p < 0.01, ***p < 0.001.

Conclusão

Embora nossos resultados prévios tenham apontado para ausência de genotoxicidade da MYR em células CHO-K1, mais estudos são necessários para ampliar a caracterização deste polifenól. Desta maneira, as perspectivas do trabalho serão de avaliar a citotoxicidade e antimutagenicidade da MYR nas células CHO-K1.

Referências

¹Ramos, A.S., Mar, J.M., da Silva, L.S., Acho, L.D.R., Silva, B.J.P., Lima, E.S., Campelo, P.H., Sanches, E.A., Bezerra, J.A., Chaves, F.C.M., Campos, F.R., Machado, M.B., 2019. Pedra-ume caá fruit: An Amazon cherry rich in phenolic compounds with antiglycant and antioxidant properties. Food Res. Int. 123, 674–683

²Ramos, A.S., Mar, J.M., da Silva, L.S., Acho, L.D.R., Silva, B.J.P., Lima, E.S., Campelo, P.H., Sanches, E.A., Bezerra, J.A., Chaves, F.C.M., Campos, F.R., Machado, M.B., 2019. Pedra-ume caá fruit: An Amazon cherry rich in phenolic compounds with antiglycant and antioxidant properties. Food Res. Int. 123, 674–683

*darinharambor@hotmail.com

Apoio: ULBRA, CNPq e CAPES

³ Fenech M. Cytokinesis-block micronucleus cytome assay. Nature Protocols 2007; 2:1084-104.