

MOSTRA DAS CIÊNCIAS E INOVAÇÃO FÓRUM DE PESQUISA CIENTÍFICA E TECNOLÓGICA

ANÁLISE DO DESENVOLVIMENTO DO FUNGO Trichoderma sp.

Jeferson Romano¹; Arthur Julião¹; Gabriela Godoy¹; Fernanda Borges², Cristina L. Ferreira²

- ¹ alunos de curso técnico em química do Colégio Dom Feliciano, Gravataí –RS
- ² professora orientadora de curso técnico em química do Colégio Dom Feliciano, Gravataí –RS

INTRODUÇÃO

O crescimento populacional das cidades tem como consequência o aumento do consumo de energia, bem como o aumento da quantidade de resíduos produzidos. Parte desses resíduos é composto por matéria orgânica sendo, geralmente, disposto em aterros sanitários ou lixões, ocasionando a saturação e reduzindo, consideravelmente, a vida útil dos mesmos. Esses resíduos orgânicos podem ser utilizados como matéria-prima na obtenção de energia. A produção de energia a partir de resíduos orgânicos é um processo amplamente lucrativo, já que a matéria-prima é o próprio resíduo orgânico. Este projeto objetiva obter dados referentes ao comportamento do fungo *Trichoderma sp* nas cascas das frutas banana, laranja e maçã. O fungo *Trichoderma sp* funcionará como uma espécie de catalisador da reação de fermentação; reação essa baseada na quebra de polissacarídeos em sacarídeos menores com conseqüente produção de etanol.

MATERIAIS E MÉTODOS

Para as análises laboratoriais, foram utilizadas cascas das frutas banana, laranja e maçã. Essas foram as frutas escolhidas devido ao fato de serem consumidas com freqüência e, portanto, serem encontradas abundantemente como resíduos. O fungo utilizado foi o *Trichoderma sp.* A primeira parte do experimento baseou-se na obtenção do substrato, compostos, essencialmente, pelas cascas das frutas e por água. Na tabela 1, constam as quantidades iniciais de fruta e de água adicionada. Para a obtenção de uma mistura homogênea, as cascas, juntamente com água, foram trituradas em liquidificador. O resultado foi uma mistura com aspecto de "papinha". Na sequência, os substratos (casca triturada + água) foram esterilizados em autoclave sob condições de temperatura e pressão de, respectivamente, 127°C e 1kgf. A última etapa refere-se à inoculação do fungo no substrato. Após esterilizados e resfriados, duas porções de 10g de substrato para cada volume de água foram armazenados em placas de petri; o fungo foi inserido no centro da amostra. O material foi armazenado dentro de uma caixa de isopor na qual, com o auxílio de uma lâmpada e de um termostato, a temperatura foi mantida constante, em torno de 22°C.

RESULTADOS E DICUSSÕES

Banana: Dentre as umidades testadas, aquela sob a qual houve melhor desenvolvimento do fungo foram as de 25% a 33%. Uma particularidade observada foi que, em algumas amostras contendo substrato a base de banana, outros fungos se desenvolveram juntamente com o *Trichoderma sp.*

Laranja: Dentre as umidades testadas, aquela sob a qual houve melhor desenvolvimento do fungo foram as de 50% e 100%. Foi observado que, nas amostras de substrato a base de laranja, o rendimento do fungo evoluiu com o aumento da quantidade de água adicionada.

Maçã: Dentre as umidades testadas, aquela sob a qual houve melhor desenvolvimento do fungo foi a de 33%. Foi observado que, nas amostras de substrato a base de laranja, que o rendimento do fungo evolui com a redução na quantidade de água adicionada.

As análises foram iniciadas com a quantidade de 100% e 150% de água. Após a primeira inoculação, foi observado que o fungo *Trichoderma sp* praticamente não se desenvolveu na umidade de 150%, sendo que, na de 100%, houve maior atividade. Na tabela 2, estão indicados os dados do rendimento do fungo em cada umidade. A partir dos resultados obtidos, constatamos as condições propícias ao cultivo de cada fungo. Isso foi possível devido às distintas características visuais apresentadas, como, por exemplo, a coloração atípica do fungo *Trichoderma sp* devido à presença de micélio, inicialmente de coloração branca e de crescimento rápido. Com o desenvolvimento, o mesmo torna-se cotonoso e compacto com tufos verdes. Qualquer desenvolvimento fora dessas características denominamos como outros fungos.

CONCLUSÕES

A partir dos resultados obtidos, conclui-se que todas as cascas possuem potencial para desenvolvimento do fungo. Foi observado que as amostras de substrato que adquiriram contaminação por outros fungos apresentaram um maior rendimento do *Trichoderma sp,* o que torna interessante o desenvolvimento de pesquisas a respeito de cultivo de colônias de diferentes fungos em um mesmo ambiente, já que, na bibliografia, consta que as propriedades biofungicidas do fungo em estudo, a princípio, são incompatíveis ao surgimento de outras espécies. Espera-se, a partir desse trabalho, o desenvolvimento de novas pesquisas sobre a produção de etanol através da utilização do fungo como agente catalisador de polissacarídeos.

REFERÊNCIAS BIBLIOGRÁFICAS

MARRIEL, I. E.; KONZEN, E. A.; ALVARENGA, R. C.; SANTOS, H. L. Tratamento e utilização de resíduos orgânicos. Informe agropecuário, n. 147, p. 24-36, mar. 1987.

JONER, Gabriela Chiele e apud. Obtenção de Etanol a partir da biomassa de frutas. Bento Gonsalves, RS, Brasil, 15 de outubro de 2015

Isolamento de Fungos. Disponível em: http://www.uefs.br/disciplinas/bio221/-isolamento_de_fungos.rtf

RESENDE, M. L. et al. Inoculação de sementes de milho utilizando o

Trichodermaharzianum como promotor de crescimento. Ci. Agrotecnol., v. 28, n. 4, p. 793-798, 2004.

ATTLI, S. D. Importância e sistemática de fungos filamentosos. Campinas: Fundação Tropical de Pesquisa, 1990.

PUTZKE, J.; PUTZKE, M. T. L. Os Reinos dos Fungos. Vol. I. Santa Cruz do Sul: EDUNISC,

Tabela 1. Relação de água por massa de casca de fruta.

Porcentagem de	Massa de água adicionada	Massa inicial de casca de fruta (g)		
água adicionada	(g)	Banana	Laranja	Maçã
150%	150	100	100	100
100%	100	100	100	100
50%	50	100	100	100
33%	33	100	100	100
25%	25	100	100	100

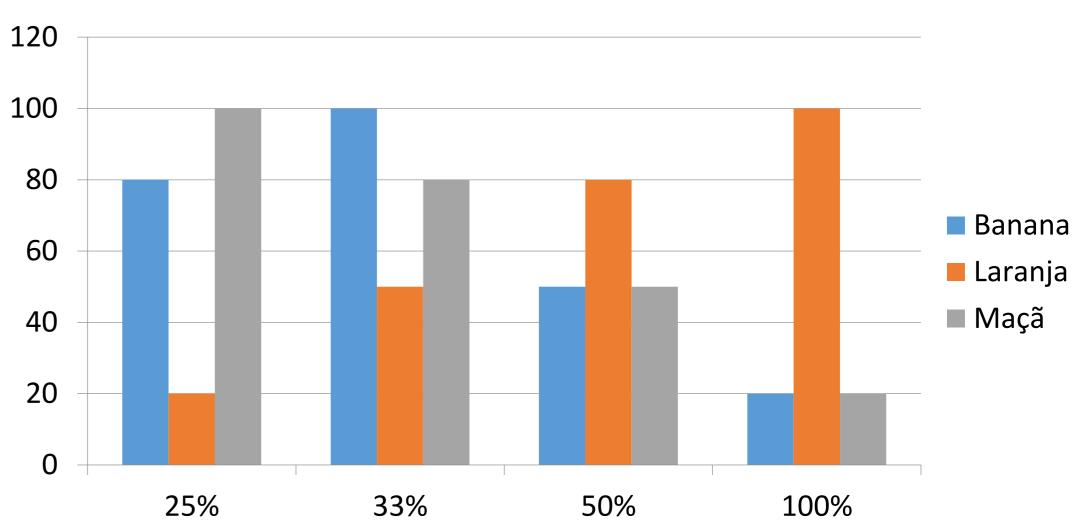


Figura 1. Rendimento do fungo em cada umidade.

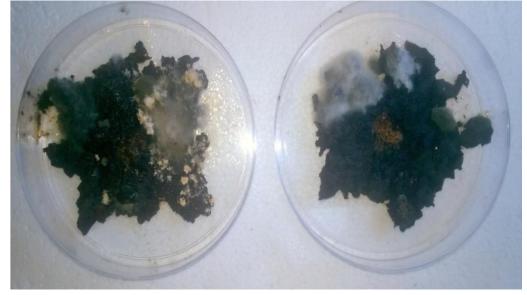

Figura 2. Substratos com fungo inoculado após 45 dias; da esquerda para direita: banana, maçã e laranja.

Figura 3. Substrato de laranja após 45 dias da inoculação; quantidade de água 100% e 25% da esquerda para direita.

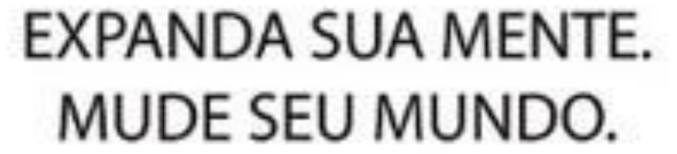


Figura 4. Substrato de maçã após 45 dias da inoculação; quantidade de água 25% e 150% da esquerda para direita.

Figura 5. Substrato de banana após 45 dias da inoculação; quantidade de água 33% e 25% da esquerda para direita.

